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We propose a model to describe the statistical properties of wave scattering through a classically chaotic
cavity in the presence of surface absorption. Experimentally, surface absorption could be realized by attaching
an “absorbing patch” to the inner wall of the cavity. In our model, the cavity is connected to the outside by a
waveguide with N open modes �or channels�, while an experimental patch is simulated by an “absorbing
mirror” attached to the inside wall of the cavity; the mirror, consisting of a waveguide that supports Na

channels, with absorption inside and a perfectly reflecting wall at its end, is described by a subunitary scatter-
ing matrix Sa. The number of channels Na, as a measure of the geometric cross section of the mirror, and the
lack of unitarity Pa=1Na

−Sa
†Sa, as a measure of absorption, are under our control: these parameters have an

important physical significance for real experiments. The absorption strength in the cavity is quantified by
�a=tr Pa. The statistical distribution of the resulting S matrix for N=1 open channel and only one absorbing
channel, Na=1, is solved analytically for the orthogonal and unitary universality classes, �=1 and �=2,
respectively, and the results are compared with those arising from numerical simulations. The relation with
other models existing in the literature, in some of which absorption has a volumetric character, is also studied.
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I. INTRODUCTION

Wave scattering experiments with microwave �1,2� and
acoustic resonators �3� represent a fruitful field for the veri-
fication of random matrix theory �RMT� predictions �4–6�
since, in that experimental domain, external parameters are
particularly easy to control. However, the cost to be paid is
the presence of absorption due to power loss in the walls of
the device �including, in a 2D experiment, the top and bot-
tom “covers” � used in the experiments. Since the appearance
of the paper by Doron et al. �7� which showed the drastic
influence of absorption, many investigations, both experi-
mental and theoretical, have been devoted to the study of
absorption effects on transport properties �8–22� of classi-
cally chaotic cavities.

A simple model to describe the statistical properties of
cavities including absorption was proposed by Kogan et al.
�9�: it describes the system through a subunitary scattering
matrix S, whose statistical distribution satisfies a maximum
information-entropy criterion. The model turns out to be
valid only in the strong-absorption limit. An alternative
model proposed by Lewenkopf et al. �10� simulates absorp-
tion by means of Np equivalent “parasitic channels,” not di-
rectly accessible to experiment �in addition to the N physical
channels�, each one having an imperfect coupling to the cav-
ity described by the transmission coefficient Tp. These para-
sitic channels can be interpreted in terms of the voltage-
probe model originally proposed by Büttiker �23,24�, where
a fictitious lead with Np channels is attached to the cavity,

each one with a coupling Tp �8�. The total scattering matrix Ŝ
for this problem is unitary and has dimension N+Np; the

N-dimensional submatrix S̃ thereof is the physical scattering
matrix which is of course subunitary. In the limit Np→� and
Tp→0, while the product �p=NpTp is kept fixed and inter-

preted as the absorption strength, this model was shown by
Brouwer and Beenakker �8� to describe volume absorption,
in the sense that the problem described by S̃ is equivalent to
one in which all the energy levels of the closed cavity ac-
quire a fixed imaginary part, associated precisely with the
absorption strength. Although the above quantity �p is not
directly under experimental control, it can be chosen so as to
fit the experimental data �20,21�.

Alternatively, instead of considering a cavity that exhibits
volume absorption, we may think of an experimental situa-
tion in which “absorbing patches” are literally attached to the
inner wall of the cavity in a controllable fashion, giving rise
to what we shall call surface absorption. The physical prop-
erties of these patches could be determined and controlled
independently of the cavity they are used with. Such an ex-
perimental situation could be realized attaching a piece of
normal conductor to the inner surface of a superconducting
microwave cavity where absorption by the walls is negligible
�25�.

In the present paper we propose a simple model to de-
scribe the statistical properties of wave scattering through a
ballistic chaotic cavity in the presence of surface absorption
as defined above. In the model �see Fig. 1�, the cavity is
connected to the outside by a waveguide with N open modes
�or channels�, while an experimental patch is simulated by
attaching to the inside wall of the cavity an “absorbing mir-
ror,” consisting of a “frustrated waveguide” that supports Na
channels and contains an absorbing barrier inside and a per-
fectly reflecting wall at its end, the mirror as a whole �also
shown in Fig. 1� being described by a subunitary scattering
matrix Sa. The number of channels Na, as a measure of the
geometric cross section of the mirror, and the lack of unitar-
ity Pa=1Na

−Sa
†Sa, as a measure of absorption, are under our

control: these parameters have an important physical signifi-
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cance for real experiments. The absorption strength in the
cavity is quantified by �a=tr Pa. Alternatively, we may think
of attaching to the inner wall of the cavity Na absorbing
patches, each one with a geometric cross section that sup-
ports only one channel with a known absorption.

The paper is organized as follows. In the next section we
study the model for surface absorption that was described in
the previous paragraph. In Sec. III we find the relation be-
tween the present model and the parasitic-channel model
also described above; we show the equivalence of the two
models when, in the latter, the limit mentioned earlier lead-
ing to volume absorption is not taken and the parameters are
chosen properly. In Sec. IV we show that the model can be
solved analytically in the one-channel case and for one ab-
sorbing channel. Finally, we present our conclusions in Sec.
V.

II. THE MODEL FOR SURFACE ABSORPTION

The system that we are interested in and that we shall
study in the present section was described in the Introduction
and is shown in Fig. 1.

The scattering problem can be studied in terms of an N
�N scattering matrix S, which in the stationary case relates
the outgoing-wave to the incoming-wave amplitudes �4,26�.
As shown schematically in Fig. 1, S can be seen as the com-
bination of a scattering matrix S0 which describes a ballistic
cavity connected to two nonabsorbing waveguides �one with
N channels on the left and the other with Na channels on the
right� and the scattering matrix Sa that describes the absorb-
ing mirror; Sa is a fixed Na�Na subunitary matrix which can
be considered as an input to the problem. The lack of unitar-
ity of Sa is defined by Pa=1Na

−Sa
†Sa. In the most general

situation, Sa, and hence Pa, is not a diagonal matrix. The
overall absorption strength of the absorbing mirror can be
quantified by �a=tr Pa.

The scattering matrix S0 is of dimension N+Na and has
the structure

S0 = �r0 t0�

t0 r0�
� , �2.1�

where r0 is the N�N reflection matrix for incidence on the
left-hand side, r0� is the Na�Na reflection matrix for inci-

dence on the right-hand side and t0 and t0� are the correspond-
ing transmission matrices of dimensions Na�N and N�Na,
respectively.

The matrix S0 will be considered to belong to one of the
basic symmetry classes introduced by Dyson in quantum me-
chanics �27�, which we briefly recall in order to make a more
precise statement. In the “unitary” case, also denoted by �
=2, the only restriction on S0 is unitarity, due to the physical
requirement of flux conservation. In the “orthogonal” case
��=1� S0 is also symmetric because of either time-reversal
invariance �TRI� and integral spin, or TRI, half-integral spin
and rotational symmetry. In the “symplectic case ��=4� ,S0

is self-dual because of TRI with half-integral spin and no
rotational symmetry. In the scattering problem of scalar clas-
sical waves, the orthogonal case is the physically relevant
one. However, we shall consider below both �=1 and �=2,
in the understanding that the unitary case is to be considered
as a reference problem, as it is often simpler to treat math-
ematically than the orthogonal one.

We assume that the barrier inside the absorbing mirror is
sufficiently far apart from both the entrance to the cavity at
one end and the perfect reflector at the other end that the
evanescent modes do not play a role �4�. Then, following the
combination rule of scattering matrices, the total S matrix
which describes the cavity with absorption is a subunitary
matrix given by

S = r0 + t0�
1

1Na
− Sar0�

Sat0, �2.2�

where 1n stands for the unit matrix of dimension n.
The physics of Eq. �2.2� is clear. The first term on the

right-hand side is the reflected part of the wave that enters
the cavity; the transmitted part reaches the absorbing mirror
with the �matrix� amplitude t0 and the fraction Sa �again a
matrix� thereof returns to the cavity; the wave then suffers a
multiple scattering process between the cavity and the ab-
sorbing mirror, until finally the fraction t0� leaves the cavity
through the lead on the left.

The statistical features of the quantum mechanical scatter-
ing produced by the cavity shown in the lower portion of
Fig. 1—assumed to have chaotic classical dynamics—are de-
scribed by a measure in the S0-matrix space which, through
the assumption of ergodicity, gives the probability of finding
S0 in a given volume element as the energy E changes and S0
wanders through that space �4�. In the absence of direct pro-
cesses, or short paths, S0 is taken to have a uniform distribu-
tion, given by the invariant measure for the symmetry class
in question. The invariant measure, denoted by d���S0�, is
defined by its invariance under the symmetry operation rel-
evant to that universality class �27,28�; i.e.,

d���S0� = d���U0S0V0� , �2.3�

where U0 and V0 are arbitrary but fixed unitary matrices in
the unitary case, while V0=U0

T in the orthogonal case. This
defines the circular unitary �orthogonal� ensemble, CUE
�COE�, for �=2 ��=1�.

The distribution

FIG. 1. A ballistic chaotic cavity described by the scattering
matrix S0, connected to a waveguide with N propagating modes and
to an “absorbing mirror.” The latter is formed by a “frustrated
waveguide” that supports Na channels and contains an absorbing
barrier inside and a perfectly reflecting mirror at its end; the absorb-
ing mirror is described by the subunitary scattering matrix Sa.
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dP��S� = p��S�d���S� �2.4�

of the resulting scattering matrix S of Eq. �2.2� for the full
system consisting of the cavity plus the absorbing mirror can
in principle be calculated for a given Sa, assuming that S0 is
distributed according to the invariant measure, Eq. �2.3�.
This procedure is particularly well suited for numerical
simulations. Indeed, it is used in Sec. IV to study numeri-
cally the case of one open channel �N=1� and one absorbing
channel �Na=1�.

One property of p��S� is immediately obvious: the aver-
age of S vanishes, i.e., �S�=0, as we can see by expanding
the right-hand side of Eq. �2.2� and averaging term by term.

Although the explicit expression for p��S� is not known
for an arbitrary number of channels, the case of one open
channel �N=1� and one absorbing channel �Na=1� can be
solved analytically: this is done in Sec. IV, exploiting the
relation with the parasitic-channel model that is explained in
the next section.

III. RELATION BETWEEN THE SURFACE-ABSORPTION
MODEL AND THE PARASITIC-CHANNEL MODEL

In the parasitic-channel model described in the Introduc-
tion and sketched in Fig. 2 the cavity is attached to a wave-
guide supporting N physical channels, while absorption is
simulated by attaching an additional, fictitious, waveguide
supporting Np equivalent “parasitic” channels, each one with
a coupling given by a transmission coefficient Tp �8,10�.

We denote by Ŝ the scattering matrix that describes the
whole system shown in Fig. 2, including the fictitious wave-

guide and the �nonabsorbing� barrier inside it; Ŝ is of dimen-
sion N+Np and has the structure

Ŝ = � S̃ Ŝ1p

Ŝp1 Ŝpp

� , �3.1�

where the indices 1 and p denote the set of N physical and Np
fictitious channels, respectively; it is unitary for �=2 and

unitary symmetric for �=1. The N�N submatrix S̃ describes
the cavity in the presence of absorption, as one would ob-
serve it in an experiment in which only the physical wave-

guide were present; S̃ is subunitary and will be referred to as
the “physical” S matrix.

The tunnel barrier in the fictitious waveguide in Fig. 2,
described by the 2Np�2Np unitary scattering matrix Sb �8�,

Sb = �	1 − Tp1Np
i	Tp1Np

i	Tp1Np
	1 − Tp1Np

� , �3.2�

implies an imperfect coupling of the parasitic channels to the
cavity; it can also be interpreted as giving rise to direct pro-

cesses in a system described by Ŝ �32�. Then, for a cavity

whose classical dynamics is chaotic, Ŝ is distributed accord-
ing to the Poisson kernel �29–31�

dPK
����Ŝ� =

�det�1NT
− �Ŝ��Ŝ�†����NT+2−��/2


det�1NT
− Ŝ�Ŝ�†�
�NT+2−�

d���Ŝ� , �3.3�

where NT=N+Np , d���Ŝ� is the invariant measure for Ŝ de-
fined as in Eq. �2.3�, assumed to be normalized to unity, and

�Ŝ� = �0N 0

0 	1 − Tp1Np

� . �3.4�

The probability distribution of the physical scattering matrix

S̃ that we are interested in must be calculated from Eq. �3.3�.
This is how Brouwer and Beenakker showed that, in the limit
Np→� and Tp→0, with the product �p=NpTp being kept
fixed and interpreted as the absorption strength, this model
describes volume absorption, in the sense that the problem

represented by S̃ is equivalent to one in which all the energy
levels of the closed cavity acquire a fixed imaginary part,
associated precisely with that absorption strength �8,11�.

Let us now think of the full system shown in Fig. 2 as the
combination of the cavity connected to the two waveguides
�in the absence of the barrier� and described by the �N
+Np�� �N+Np� scattering matrix,

Ŝ0 = �r̂0 t̂0�

t̂0 r̂0�
� , �3.5�

plus the barrier described by Sb. We shall not take, in what
follows, the limit mentioned in the preceding paragraph, i.e.,
Np will be kept finite. As we shall see, it will also be conve-
nient, for the description of the barrier, to drop the
“equivalent-channel” assumption normally made in this con-
text �Eq. �3.2�� and consider a barrier matrix Sb with the
general structure

Sb = �rb tb�

tb rb�
� , �3.6�

where the primes indicate incidence to the barrier from in-

side the cavity. The total scattering matrix Ŝ is then given by

Ŝ = rB + tB�
1

1N+Np
− Ŝ0rB�

Ŝ0tB. �3.7�

Here we have introduced the �N+Np�� �N+Np� matrices

FIG. 2. In the parasitic-channel model, a ballistic chaotic cavity
connected to a waveguide with N propagating modes is also con-
nected to an additional, fictitious, waveguide supporting Np “para-
sitic” channels. Inside the latter waveguide there is a �nonabsorb-
ing� barrier described by the scattering matrix Sb. Only the N�N

submatrix S̃ of the total scattering matrix �see Eq. �3.1�� of this

system is accessible to experiment; S̃ is subunitary and is taken as a
model for a real cavity in the presence of absorption.
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rB = �0N 0

0 rb
�, tB� = �1N 0

0 tb�
� , �3.8a�

tB = �1N 0

0 tb
�, rB� = �0N 0

0 rb�
� , �3.8b�

which denote the barrier reflection and transmission matrices
associated with the two waveguides in Fig. 2 �notice that in
the present model the left waveguide has no barrier; hence
the matrices 0N and 1N in Eq. �3.8�; in a more complete
model there might be a barrier in the left waveguide too �see

comment at the end of Sec. IV��. The physical S̃ matrix of
Eq. �3.1� can then be found from Eq. �3.7� to be

S̃ = r̂0 + t̂0�
1

1Np
− rb�r̂0�

rb�t̂0. �3.9�

Comparing Eqs. �2.2� and �3.9� we see that the model for
surface absorption of Sec. II and the parasitic-channel model
of the present section can be made equivalent, in the sense

that S̃=S, choosing the number of parasitic channels in the
latter to coincide with the number of absorbing channels in
the former, i.e., Np=Na, choosing the two cavities to be iden-

tical, i.e., Ŝ0=S0, and the barrier reflection matrix rb� of the
present section to coincide with the absorption matrix of Sec.
II, i.e., rb�=Sa.

Within the equivalent-channel assumption, equivalence of
the two models would require Sa=	1−Tp1Np

. If in our
surface-absorption model we were to take the limit that was
described right after Eq. �3.4� in connection with the
parasitic-channel model, we would obtain the same answer
as for volume absorption by identifying �p with �a=tr Pa
where Pa=1Na

−Sa
†Sa.

The statistical distribution of the scattering matrix Ŝ of
Eq. �3.7� is of course given by Poisson’s kernel of Eq. �3.3�,
where the average S matrix �Ŝ� is now given by �Ŝ�=rB �see
Eq. �3.8a��, instead of Eq. �3.4�. Using the identification de-
scribed right after Eq. �3.9�, the calculation of the resulting

distribution of S̃ also gives the distribution of S, Eq. �2.2�, for
the model of the preceding section. This procedure will be
taken advantage of in the next section, in order to analyze the
case N=1,Na=1.

IV. ANALYTICAL SOLUTION OF THE SURFACE-
ABSORPTION MODEL FOR THE CASE N=1, Na=1

In this section we calculate, within the surface-absorption
model of Sec. II, the distribution of the scattering matrix S of
Eq. �2.2� which describes a chaotic cavity perfectly con-
nected to a waveguide supporting one channel �N=1�, and in
the presence of one absorption channel �Na=1�; S is thus a
complex number that we parametrize as

S = 	Rei�. �4.1�

The absorbing mirror is also described by a subunitary ma-
trix Sa=	Raei�a, the resulting distribution for S being inde-

pendent of �a, as S0 is distributed according to the invariant
measure.

We can take advantage of the equivalence with the
parasitic-channel model discussed in the preceding section,
with the identification Np=Na=1 and Tp= Pa=1−Ra. For the

present case, Ŝ of Eq. �3.1� is a 2�2 unitary matrix for �
=2, with the additional condition of symmetry for �=1. It
can be parametrized in a polar representation as �33,34�

Ŝ = �− 	1 − �ei�	+	�� 	�ei�	+
��

	�ei�	�+
� 	1 − �ei�
+
�� � , �4.2�

where 0�	 ,
 ,	� ,
��2 and 0���1; for �=1 we have

the restrictions 	�=	 and 
�=
. The matrix element Ŝ11 is

the physical S̃S=−	1−�ei�	+	��, so that the parameters of
S appearing in Eq. �4.1� are given by

R = 1 − � , �4.3a�

� = 	 + 	� +  . �4.3b�

The matrix Ŝ is distributed according to Eq. �3.3�, with NT
=N+Np=2 and

�Ŝ� = �0 0

0 	Ra
� . �4.4�

In the polar representation of Eq. �4.2�, the invariant measure

d���Ŝ� needed in Eq. �3.3� is given by �35,36�

d���Ŝ� =
d�

�2	��2−�

d	

2

d


2
�d	�

2

d
�

2
��−1

. �4.5�

The quantity 
det�1N+NP
− Ŝ�Ŝ�†�
 appearing in Eq. �3.3�, i.e.,


det�12 − Ŝ�Ŝ�†�
 = 1 + �1 − ��Ra − 2	1 − �	Racos�
 + 
�� ,

�4.6�

is independent of the angles 	 ,	� and hence of the phase �
of S, which is thus uniformly distributed. The normalized
probability distribution of S can be written as

dP��S� = P��R�dR
d�

2
. �4.7�

What remains to be calculated is the probability distribution
of the reflection coefficient R , P��R�. References �31,4� give
the distribution of � for certain cases of the average S matrix,
of which Eq. �4.4� is a particular case. In Eqs. �5.8� and
�5.11� of Ref. �31� �or Eqs. �6.81� and �6.85� of Ref. �4��, we
make the substitution 1−T=R, together with X=0,Y =	Ra in
�5.8� and X=	Ra ,Y =0 in �5.11� of Ref. �31� �or Eqs. �6.81�
and �6.85� of Ref. �4�, respectively�, with the result

P2�R� =
�1 − Ra�2�1 + RaR�

�1 − RaR�3 �4.8�

for �=2, and
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P1�R� =
�1 − Ra�3/2

2	1 − R
2F1�3/2,3/2,1;RaR� �4.9�

for �=1, 2F1 being a hypergeometric function �37�.
As was mentioned at the beginning of the present section,

the distribution of S could also be obtained from its defini-
tion, Eq. �2.2�, and the fact that S0 is distributed according to
the invariant measure. This procedure is especially suited for
numerical simulations. We use the same parameters as
above: the absorbing mirror is described by the 1�1 subuni-
tary scattering matrix Sa=	Raei�a, where the phase �a and the
reflection coefficient Ra are fixed; 0�Ra�1 and for simplic-
ity we take �a=0 �see discussion after Eq. �4.1��. The lack of
unitarity of Sa is given by Pa=1−Ra. The matrix S0 of Eq.
�2.1� is a 2�2 unitary matrix that can be parametrized in a
polar representation as in Eq. �4.2�, with the various param-
eters now having an index 0 and the range of variation 0
�	0� ,
0� ,	0� ,
0��2 and 0��0�1; for �=1 we have the
restrictions 	0�=	0 and 
0�=
0. For a chaotic cavity, S0 is
distributed according to the invariant measure which in terms
of the polar parameters is given by

d���S0� =
d�0

�2	�0�2−�

d	0

2

d
0

2
�d	0�

2

d
0�

2
��−1

. �4.10�

The distribution of S can then be obtained from Eq. �2.2�.
In Fig. 3 we compare the analytical results of Eqs. �4.8�

and �4.9� with the results of a numerical simulation obtained
from the ensemble of Eq. �4.10� and the relation �2.2� be-

tween S and S0, as explained in the preceding paragraph: the
agreement is excellent.

We should point out that in real experiments the wave-
guide is not perfectly coupled to the cavity, as has been
shown in Ref. �15�, thus giving rise to direct processes. In
such cases, the distribution of S must be modified by the
procedure of Ref. �21�.

In the limiting case Ra=0, the “patch” added to the inner
surface and modelled by the absorbing mirror illustrated in
Fig. 1 shows complete absorption. In this case, the probabil-
ity distribution of the reflection coefficient R becomes
P2�R�=1 in the unitary case, and P1�R�=1/2	1−R in the
orthogonal case �see Eqs. �4.8� and �4.9�, respectively, and
Fig. 3�. It is interesting to contrast these results with those for
strong volume absorption �or for strong surface absorption
with a large number of absorbing channels�, in which case
P�R��exp�−cR�, which is Rayleigh’s law. In point of fact,
we can obtain these two limiting behaviors in a unified way.
Consider a cavity connected to the outside by means of NT
=1+Na channels, and assume ideal coupling between the
cavity and the waveguides. This situation represents the
problem of Fig. 1 when the absorbing mirror has perfect
absorption �Sa=0�, or the problem of Fig. 2 in the absence of
the barrier in the parasitic channels �rb�=0�. We then assume
such a system to be described by the invariant measure. In
Ref. �38� it is shown that the 11 matrix element of the
NT-dimensional scattering matrix, i.e., S in our notation, is
distributed as p2�S�� �1− 
S
2�NT−2 in the unitary case and
p1�S�� �1− 
S
2��NT−3�/2 in the orthogonal case. When NT is set
equal to 2 we obtain precisely the results mentioned at the
beginning of this paragraph, while when NT�1 we obtain
Rayleigh’s law. Let us also mention that Rayleigh’s law for
strong volume absorption can be given an appealing interpre-
tation in terms of a central-limit theorem, as shown in Ref.
�9�. On the other hand, in the weak-absorption limit, i.e.,
when Ra→1, the R probability distribution P��R�→��R
−1�, both for surface absorption �see Eqs. �4.8� and �4.9� and
Fig. 3�, as well as for volume absorption. In the latter case,
however, the ��R−1� behavior is attained with a distribution
which becomes very peaked for R�1 and vanishes for R
=1. In contrast, in the former case �Fig. 3� the maximum of
the distribution is at R=1.

V. SUMMARY AND CONCLUSIONS

We have presented a model to describe the statistical
properties of wave scattering in a ballistic chaotic cavity in
the presence of surface absorption: it is suggested that this
type of absorption be realized in the laboratory by attaching
one or several “absorbing patches” to the inner wall of the
cavity. The model simulates one such absorbing patch by
means of an absorbing mirror, whose physical characteris-
tics, i.e., its cross section and its absorption properties, are, in
principle, experimentally measurable.

We compare our model with the parasitic-channel model
introduced by other authors and find the conditions under
which the two are equivalent. It is found in the literature that
in the limit of a large number of parasitic channels weakly
coupled to the cavity, the parasitic-channel model describes

FIG. 3. Distribution of R of Eq. �4.1� for �a� �=2 and �b� �
=1 symmetries, for one open channel, N=1, one absorbing channel,
Na=1, and Ra=0.1, 0.5, and 0.9. The continuous lines are the ana-
lytical results given by Eqs. �4.8� for �=2 and �4.9� for �=1. The
numerical simulation was performed as explained in the text using
105 samples; the different values of Ra are distinguished by the
symbols also shown in the figure. The agreement between theoret-
ical and numerical results is excellent.
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absorption uniformly distributed over the volume of the cav-
ity; in this limit, volume and surface absorption give the
same results.

Finally, we show that our model is analytically solvable
for the case of one open channel, N=1, and one absorbing
channel, Na=1, for arbitrary absorption strength. The results
of numerical simulations for this case are in excellent agree-
ment with theory. In principle, this problem is amenable to
experimental observation.
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